Перевод: с русского на все языки

со всех языков на русский

Источник ЭДС

  • 1 источник ЭДС

    Engineering: emf source

    Универсальный русско-английский словарь > источник ЭДС

  • 2 источник эдс

    Engineering: emf source

    Универсальный русско-английский словарь > источник эдс

  • 3 источник эдс

    Русско-английский политехнический словарь > источник эдс

  • 4 источник ЭДС

    манбаи ҚЭҲ. физ.

    Краткий русско-таджикский терминологический словарь по точным, естественным и техническим наукам > источник ЭДС

  • 5 магнитный усилитель-управляемый источник эдс

    1. voltage controlling transductor

     

    магнитный усилитель-управляемый источник эдс

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > магнитный усилитель-управляемый источник эдс

  • 6 независимый источник эдс

    1. independent emf source

     

    независимый источник эдс

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > независимый источник эдс

  • 7 магнитный усилитель-управляемый источник эдс

    Electrical engineering: voltage controlling transductor

    Универсальный русско-английский словарь > магнитный усилитель-управляемый источник эдс

  • 8 независимый источник ЭДС

    Универсальный русско-английский словарь > независимый источник ЭДС

  • 9 реактивная мощность

    1. wattless power
    2. RP
    3. reactive power
    4. imaginary power
    5. circulating power

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > реактивная мощность

  • 10 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 11 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 12 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 13 датчик

    да́тчик м.
    да́тчик воспринима́ет (физическую, электрическую и т. п.) [m2]величину́ — a transducer responds to [senses] a (physical, electrical, etc.) variable [quantity, stimulus]
    тари́ровать да́тчик — calibrate a transducer
    2. ( источник информации) (data) transmitter
    3. ( чувствительный или измерительный элемент) measuring [sensing] element, sensor, detector
    да́тчик преобразу́ет одну́ величину́ в другу́ю — a sensor converts one quantity into another
    да́тчик а́зимута — azimuth (data) transmitter
    да́тчик акти́вного сопротивле́ния — variable-resistance [potentiometric] transducer
    акусти́ческий да́тчик — acoustic transducer
    астронавигацио́нный да́тчик — star sensor, star seeker
    бесконта́ктный да́тчик — contactless pickup
    биологи́ческий да́тчик — biological sensor
    болометри́ческий да́тчик — bolometric transducer
    ва́куумный манометри́ческий да́тчик — filled-system vacuum transducer
    да́тчик вре́мени — timer (clock)
    да́тчик вре́мени с самовозвра́том — self-resetting timer
    вре́мя-и́мпульсный да́тчик — cycle-repeat timer
    да́тчик вспы́шечных сигна́лов геод.flashing beacon
    да́тчик высоты́ — altitude sensor
    газоразря́дный да́тчик — gas-discharge transducer
    генера́торный да́тчик — (self-)generating transducer
    гидравли́ческий да́тчик — hydraulic pickup
    да́тчик гидролока́тора — sonar transducer
    гироскопи́ческий да́тчик — gyro(scope) transmitter, gyroscopic pickup
    да́тчик глубины́ — depth sensor
    да́тчик горизо́нта — horizon scanner
    да́тчик давле́ния — pressure transducer, pressure pickup
    да́тчик давле́ния ма́сла авто — oil-pressure sending unit, oil-pressure sender
    да́тчик давле́ния по́чвы — soil-pressure cell
    деформа́ций да́тчик — strain gauge
    динами́ческий да́тчик — dynamic transducer
    динамометри́ческий да́тчик — force transducer
    дистанцио́нный да́тчик — remote pickup
    дифференциа́льный да́тчик — differential transducer
    ё́мкостный да́тчик — variable-capacitance transducer, capacitive pickup
    жи́дкостно-потенциометри́ческий да́тчик — liquid-resistance transducer
    жи́дкостный да́тчик — liquid pickup
    и́мпульсный да́тчик — pulse transducer
    да́тчик и́мпульсов ( источник импульсных сигналов) — pulser
    индукти́вный да́тчик — variable-induction [inductive] pickup
    индукцио́нный да́тчик — variable reluctance pickup
    индукцио́нный да́тчик ко́мпаса — magnetic field sensor
    индукцио́нный да́тчик с переме́нной пло́щадью — variable-coupling inductance transducer
    индукцио́нный да́тчик с переме́нным зазо́ром — variable air gap inductance transducer
    инерциа́льный да́тчик — inertial sensor
    компенсацио́нный да́тчик — force-balance transducer
    да́тчик конта́ктного сопротивле́ния — contact-resistance transducer
    конта́ктный да́тчик — contact pickup
    да́тчик кре́на — roll sensor
    да́тчик лине́йного перемеще́ния и угло́в поворо́та — linear-and-angular movement pickup
    лине́йный да́тчик — linear transducer
    да́тчик лине́йных ускоре́ний — linear accelerometer
    магни́тный да́тчик — magnetic transducer
    магниторезисти́вный да́тчик — variable-resistance transducer
    магнитострикцио́нный да́тчик — magnetostrictive transducer
    магнитоупру́гий да́тчик — magneto-elastic transducer
    магнитоэлектри́ческий да́тчик — moving-coil transducer
    манометри́ческий да́тчик — filled-system transducer
    мембра́нный да́тчик — diaphragm pickup
    микрова́ттный да́тчик — micropower transmitter
    да́тчик микрометеори́тной эро́зии — micrometeorite erosion gauge
    да́тчик моме́нта ( в гироскопе) — torque motor, torque generator
    моме́нтный да́тчик ( в гироскопе) — torque motor, torque generator
    да́тчик моме́нтов ( в гиромагнитном компасе) — slaving-torque motor
    да́тчик нау́чной информа́ции — scientific sensor
    нейтро́нный да́тчик — neutron-sensitive element
    да́тчик опо́рных часто́т [ДОЧ] — frequency synthesizer, frequency standard assembly
    опти́ческий да́тчик — optical sensor
    да́тчик ориента́тора — sensor, seeker
    параметри́ческий да́тчик — modulating transducer
    да́тчик перемеще́ния — displacement transducer
    да́тчик перепа́да давле́ния — differential pressure pickup
    плё́ночный да́тчик косм.film gauge
    пневмати́ческий да́тчик — pneumatic transmitter
    погружно́й да́тчик — displacer-type transducer
    да́тчик пожа́рной сигнализа́ции — fire detector
    да́тчик положе́ния — position pickup
    потенциометри́ческий да́тчик — potentiometer transducer
    да́тчик пото́ка — flow transducer
    програ́ммный да́тчик — program(me) transmitter
    да́тчик продо́льных ускоре́ний — fore-and-aft accelerometer
    прото́чный да́тчик — flow-type transducer, flow-type pickup, flow-type sensor
    да́тчик прямо́го де́йствия — direct-acting transducer
    путево́й да́тчик маш., метал.-об.path-control transducer
    пьезорезисти́вный да́тчик — piezoresistive transducer
    пьезоэлектри́ческий да́тчик — piezoelectric transducer
    да́тчик работоспосо́бности — health sensor
    радиоакти́вный да́тчик — radiotracer
    разме́рный да́тчик — measuring transmitter, gauge
    да́тчик разме́ров — gauging transducer
    да́тчик рассогласова́ния — error sensor
    расходоме́рный да́тчик — flow transducer
    резисти́вный да́тчик — resistance transducer
    реоста́тный да́тчик — variable-resistance transducer
    реохо́рдный да́тчик — slide-wire gauge
    рыча́жный да́тчик — lever pickup
    светочувстви́тельный да́тчик — photosensitive transducer
    сельси́нный да́тчик — synchro pickup
    да́тчик систе́мы ориента́ции — attitude(-control) sensor
    да́тчик систе́мы ориента́ции, звё́здный — star [stellar] tracker
    да́тчик систе́мы ориента́ции, со́лнечный — sun [solar] sensor
    сква́жинный да́тчик — borehole caliper
    скоростно́й да́тчик — velocity-type [rate] transducer
    да́тчик случа́йных чи́сел — random-number generator
    стру́йный да́тчик — jet-pipe [flapper-nozzle] transducer
    стру́нный да́тчик — vibrating wire transducer
    да́тчик с часто́тным вы́ходом — oscillatory-type transducer
    твердоте́льный да́тчик — solid-state probe
    телеметри́ческий да́тчик — telemeter (transducer)
    температу́рный да́тчик — temperature-sensitive element
    да́тчик температу́ры воды́ авто — water-temperature sending unit, water-temperature sender
    тензометри́ческий да́тчик — strain-gauge transducer (см. тж. тензодатчик)
    термоэлектри́ческий да́тчик — thermocouple sensor
    да́тчик техни́ческой информа́ции — engineering sensor
    трансформа́торный да́тчик — differential-transformer transducer
    да́тчик тя́гового уси́лия — draw-bar load sensing mechanism
    да́тчик угла́ — angle-data transmitter
    да́тчик у́голь — поро́да — coal sensor
    ультразвуково́й да́тчик — ultrasonic transducer
    да́тчик у́ровня — level detector, level gauge
    да́тчик у́ровня, накладно́й — tankside level transmitter
    да́тчик у́ровня, поплавко́вый — float-level gauge
    да́тчик уси́лия — force cell
    да́тчик ускоре́ний — acceleration transducer
    да́тчик уста́лостных разруше́ний — fatigue failure gauge
    фотохими́ческий да́тчик — photochemical pickup
    фотоэлектри́ческий да́тчик — photoelectric sensor, photoelectric transducer
    хемотро́нный да́тчик — solion
    центробе́жный да́тчик — centrifugal transducer
    да́тчик ци́клов вчт.cycler
    да́тчик эдс Хо́лла — Hall generator
    электрогидравли́ческий да́тчик — electrohydraulic pickup
    электрокинети́ческий да́тчик — electrokinetic transducer
    электромагни́тный да́тчик — electromagnetic transducer
    электромехани́ческий да́тчик — electromechanical sensor
    электро́нный да́тчик — electronic pickup
    электрохими́ческий да́тчик — solion
    * * *

    Русско-английский политехнический словарь > датчик

  • 14 помеха нормального вида

    1. series-mode interference
    2. normal-mode interference

     

    помеха нормального вида
    -
    [Интент]

    Помеха - внешнее или внутреннее воздействие, приводящее к искажению аналоговой или дискретной информации во время ее хранения, преобразования, обработки или передачи.

    Различают помехи общего и нормального вида.

    Помехи нормального вида - такие помехи, источник которых находится в цепях данного канала связи. Источниками помех нормального вида могут быть элементы цепи, генерирующие сигналы, точки соединения разнородных проводников.

    Помехи общего вида - такие помехи, источник которых находится в сигнальных или силовых цепях, не относящихся к данному каналу связи. Источниками помех общего вида могут быть электрические цепи, электротехническое оборудование, системы заземления, токопроводящие элементы строительных конструкций.

    Помехи общего вида могут проникать в канал передачи данных различными способами: электростатические и электромагнитные поля, общие участки цепи и т.д. Путь проникновения помехи в канал связи - это точно такой же канал связи, только паразитный и имеет такую же структуру, как и обычный канал связи:

    Методы борьбы с помехами:

    1) Воздействие на источники помех - предотвращение появления или уменьшение числа источников помех и уровня создаваемых ими помех.

    2) Уменьшение или исключение паразитных связей источников помех с каналами передачи данных и увеличение затухания помех на пути их проникновения в канал передачи данных.

    3) Выделение и фильтрация помех в приемнике.

    Для исключения и ослабления паразитных связей используют:

    1)Пространственное разделение цепей

    - существует минимально допустимое расстояние между силовыми и сигнальными цепями, которое зависит от тока и напряжения в силовых цепях. Например для тока 10А и напряжения 220В - не менее 30 см.

    - не следует располагать силовые и сигнальные линии параллельно, если пересекать, то под углом 90о.

    - расстояние от сигнальных линий до металлических конструкций должно быть не менее 30 см.

    - сигнальные линии следует прокладывать не ближе 10-15 см от помещений с интенсивным источником помех (машинные залы и т.д.)

    2)Экранирование сигнальных цепей. Использование экранированных кабелей, а также прокладка кабелей в металлических трубах и желобах ослабляет влияние паразитных электромагнитных и электростатических полей.

    3)Симметрирование. Например использование витой пары - это эффективное средство борьбы с помехами от внешних НЧ электромагнитных полей. ЭДС наводимое в составляющих пару проводах полностью компенсируется по знаку и модулю.

    4)Гальваническое разделение канала связи на несколько контуров (трансформаторная или оптическая развязка). Обычно такое разделение используют в том случае, когда канал связи имеет несколько заземляющих устройств.

    [ http://kip-help.narod.ru/tau/pomehi.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > помеха нормального вида

  • 15 помеха общего вида

    1. parallel-mode interference
    2. common-mode interference

     

    помеха общего вида
    -

    Кондуктивные помехи в цепях, имеющих более одного проводника, принято также делить на помехи «провод - земля» (синонимы − несимметричные, общего вида, Common Mode) и «провод-провод» (симметричные, дифференциального вида, Differential Mode).
    В первом случае («провод-земля») напряжение помехи приложено, как следует из названия, между каждым из проводников цепи и землей.
    Во втором - между различными проводниками одной цепи.
    Обычно самыми опасными для аппаратуры являются помехи «провод-провод», поскольку они оказываются приложенными так же, как и полезный сигнал.
    Реальные помехи обычно представляют собой комбинацию помех «провод-провод» и «провод-земля».
    [Вербин В.С. Помехи.]


    Помеха - внешнее или внутреннее воздействие, приводящее к искажению аналоговой или дискретной информации во время ее хранения, преобразования, обработки или передачи.

    Различают помехи общего и нормального вида.

    Помехи нормального вида - такие помехи, источник которых находится в цепях данного канала связи. Источниками помех нормального вида могут быть элементы цепи, генерирующие сигналы, точки соединения разнородных проводников.

    Помехи общего вида - такие помехи, источник которых находится в сигнальных или силовых цепях, не относящихся к данному каналу связи. Источниками помех общего вида могут быть электрические цепи, электротехническое оборудование, системы заземления, токопроводящие элементы строительных конструкций.

    Помехи общего вида могут проникать в канал передачи данных различными способами: электростатические и электромагнитные поля, общие участки цепи и т.д. Путь проникновения помехи в канал связи - это точно такой же канал связи, только паразитный и имеет такую же структуру, как и обычный канал связи:

    Методы борьбы с помехами:

    1) Воздействие на источники помех - предотвращение появления или уменьшение числа источников помех и уровня создаваемых ими помех.

    2) Уменьшение или исключение паразитных связей источников помех с каналами передачи данных и увеличение затухания помех на пути их проникновения в канал передачи данных.

    3) Выделение и фильтрация помех в приемнике.

    Для исключения и ослабления паразитных связей используют:

    1)Пространственное разделение цепей

    - существует минимально допустимое расстояние между силовыми и сигнальными цепями, которое зависит от тока и напряжения в силовых цепях. Например для тока 10А и напряжения 220В - не менее 30 см.

    - не следует располагать силовые и сигнальные линии параллельно, если пересекать, то под углом 90о.

    - расстояние от сигнальных линий до металлических конструкций должно быть не менее 30 см.

    - сигнальные линии следует прокладывать не ближе 10-15 см от помещений с интенсивным источником помех (машинные залы и т.д.)

    2)Экранирование сигнальных цепей. Использование экранированных кабелей, а также прокладка кабелей в металлических трубах и желобах ослабляет влияние паразитных электромагнитных и электростатических полей.

    3)Симметрирование. Например использование витой пары - это эффективное средство борьбы с помехами от внешних НЧ электромагнитных полей. ЭДС наводимое в составляющих пару проводах полностью компенсируется по знаку и модулю.

    4)Гальваническое разделение канала связи на несколько контуров (трансформаторная или оптическая развязка). Обычно такое разделение используют в том случае, когда канал связи имеет несколько заземляющих устройств.

    [ http://kip-help.narod.ru/tau/pomehi.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > помеха общего вида

  • 16 элемент

    cell, detail, device, (конструкции, машины, схемы) element, elementary unit, entry, (изображения, геометрической фигуры, топологии) feature, ( расчетной схемы) node, organ, ( данных) item вчт., (конструкции, машины, схемы, множества, массива) member, part, term, unit
    * * *
    элеме́нт м.
    1. (составная часть чего-л.) element, component
    3. (устройство, прибор) device, unit; ( иногда) element
    4. мат. element, quantity; ( треугольника) part
    5. (списка выходов, макрокоманды) вчт. entry
    элеме́нт аккумуля́торной батаре́и — storage(-battery) [accumulator] cell
    аккумуля́торный элеме́нт — storage(-battery) [accumulator] cell
    акти́вный элеме́нт — active element, active component
    элеме́нт аналити́ческой фу́нкции — element of an analytic function
    ана́логовый элеме́нт — analog element
    элеме́нт анте́нны — (aerial [antenna]) element
    элеме́нт анте́нны, акти́вный — radiating [directly excited] element
    элеме́нт анте́нны, пасси́вный — passive [parasitically excited] element
    арми́рующий элеме́нт стр.reinforcing element
    бесконе́чно удалё́нные элеме́нты мат. — points at infinity, ideal points
    элеме́нты букв, выступа́ющие — ascenders
    элеме́нты букв, свиса́ющие — descenders
    элеме́нт вероя́тности — probability element
    элеме́нт Весто́на — Weston standard cell
    элеме́нт ви́хря — vortex element
    влагочувстви́тельный элеме́нт — humidity-sensitive element
    воспринима́ющий элеме́нт — sensing element, sensor
    воспринима́ющий, опти́ческий элеме́нт — optical sensor
    входно́й элеме́нт — input element
    элеме́нт вы́борки — sample unit
    элеме́нт вы́борочного пла́на мат.plot
    выходно́й элеме́нт — output element
    элеме́нт вычисли́тельной маши́ны — computer element
    вычисли́тельный элеме́нт — computer element; ( в аналоговой технике) computing element
    гальвани́ческий элеме́нт — galvanic cell
    гальвани́ческий, возду́шно-ци́нковый элеме́нт — air-zinc cell
    гальвани́ческий, га́зовый элеме́нт — gas cell
    гальвани́ческий, контро́льный элеме́нт — pilot cell
    гальвани́ческий, концево́й элеме́нт — end cell
    гальвани́ческий, концентрацио́нный элеме́нт — concentration cell
    гальвани́ческий, необрати́мый элеме́нт — irreversible cell
    гальвани́ческий, обрати́мый элеме́нт — reversible cell
    гальвани́ческий, перви́чный элеме́нт — primary cell
    гальвани́ческий, у́гольный элеме́нт — carbon cell
    гистере́зисный элеме́нт — hysteretic element
    элеме́нт гла́вной диагона́ли определи́теля мат.leading element in a determinant
    элеме́нт да́нных — data element, data item
    двои́чный элеме́нт вчт.binary cell
    двухпозицио́нный элеме́нт вчт., элк. — two-position [two-stable state] element
    дискре́тный элеме́нт — discrete element, discrete component
    доче́рний элеме́нт физ.daughter element
    элеме́нт жи́дкости — fluid element
    жи́дкостный элеме́нт — wet cell
    элеме́нт заде́ржки — delay element
    элеме́нт запомина́ющего устро́йства — storage [memory] element
    запомина́ющий элеме́нт — storage [memory] element, storage [memory] cell (Не путать с яче́йкой па́мяти. Not to be confused with storage register, storage location)
    запомина́ющий элеме́нт нахо́дится в (состоя́нии) «0» или «1» — the storage [memory] cell is in a “0” or a “1” state
    устана́вливать запомина́ющий элеме́нт в (состоя́ние) «0» или «1» — set the storage [memory] cell to a “0” or “1” state
    звукоизлуча́ющий элеме́нт — acoustic radiating element
    звукоприё́мный элеме́нт — sound pick-up element
    элеме́нт И — AND element
    избы́точный элеме́нт — redundant element
    измери́тельный элеме́нт — measuring element
    элеме́нт изображе́ния тлв. — picture element, elemental area
    элеме́нт ИЛИ — OR element
    иммерсио́нный элеме́нт ( полупроводникового фотоприёмника) — immersion element
    и́мпульсный элеме́нт автмт.sampler
    инверти́рующий элеме́нт — inverting element
    интегра́льный элеме́нт элк.integrated (circuit) element
    исхо́дный элеме́нт физ. — parent element; original element
    коммутацио́нный элеме́нт элк.switching element
    элеме́нт констру́кции стр.member
    элеме́нт констру́кции, несу́щий — bearing member
    элеме́нт констру́кции, попере́чный — cross member
    элеме́нт констру́кции, продо́льный — longitudinal member
    элеме́нт констру́кции, рабо́тающий на изги́б — member in bending
    элеме́нт констру́кции, рабо́тающий на круче́ние — member in torsion
    элеме́нт констру́кции, рабо́тающий на растяже́ние — member in tension
    элеме́нт констру́кции, рабо́тающий на сжа́тие — compressional member, (compression) strut
    элеме́нт констру́кции, рабо́тающий на срез — member in shear
    элеме́нт констру́кции, уси́ливающий — reinforcing member, stiffener
    конта́ктный элеме́нт эл. — contact element, contact electrode
    криоге́нный элеме́нт — cryogenic element
    леги́рующий элеме́нт
    1. метал. alloying element
    2. полупр. doping element
    логи́ческий элеме́нт ( ЦВМ) — logic element, gate
    набо́р логи́ческих элеме́нтов облада́ет функциона́льной полното́й — the set of gates is functionally complete
    логи́ческий, запомина́ющий элеме́нт — storage [memory, sequential] element
    логи́ческий элеме́нт И — AND gate, AND circuit
    логи́ческий элеме́нт ИЛИ — OR gate, OR circuit
    логи́ческий элеме́нт ИЛИ-НЕ — NOR gate, NOR circuit
    логи́ческий элеме́нт И-НЕ — NAND gate, NAND circuit
    логи́ческий, комбинацио́нный элеме́нт — combinational [decision, memoryless] element, gate
    логи́ческий, мажорита́рный элеме́нт — majority (logic) element
    логи́ческий, микроминиатю́рный (мо́дульный) элеме́нт — micrologic element
    логи́ческий элеме́нт НЕ — NOT [inverter] gate, NOT [inverter] circuit
    логи́ческий, поро́говый элеме́нт — threshold element
    логи́ческий, реша́ющий элеме́нт — decision [memoryless, combinational] element, gate
    выходно́й сигна́л реша́ющего логи́ческого элеме́нта определя́ется комбина́цией входны́х сигна́лов — the output of a decision element is produced by a combination of inputs
    магни́тный элеме́нт — magnetic element
    магни́тный, многоды́рочный элеме́нт — magnetic multiaperture element
    элеме́нт ма́ссы — element of mass
    матери́нский элеме́нт физ.parent element
    ма́тричный элеме́нт мат. — matrix element, element of a matrix
    ме́стный элеме́нт — local (galvanic) call
    элеме́нт микросхе́мы — integrated-circuit [IC] element
    элеме́нт мише́ни ( в ЭЛТ) — target element
    мо́крый элеме́нт — wet cell
    монокристалли́ческий элеме́нт — single-crystal element
    навесно́й элеме́нт элк. — interconnection [discrete interconnected] component
    нагрева́тельный элеме́нт — heating element
    элеме́нт на твё́рдом те́ле — solid-state element
    невзаи́мный элеме́нт — nonreciprocal [unidirectional] element
    нелине́йный элеме́нт — non-linear element
    нерабо́чий элеме́нт вчт.inactive entry
    несо́бственные элеме́нты мат. — points at infinity, ideal points
    норма́льный элеме́нт ( как мера эдс) — standard cell
    норма́льный, насы́щенный элеме́нт — saturated standard cell
    норма́льный, ненасы́щенный элеме́нт — unsaturated standard cell
    обра́тный элеме́нт мат.inverse
    элеме́нт объё́ма мат. — volume element, element [differential] of volume, cell
    опо́рный элеме́нт ( отсчёта или сравнения) — reference element
    оптикоэлектро́нный элеме́нт — optoelectronic element
    опти́ческий элеме́нт автомоби́льной фа́ры — (lamp) sealed-beam unit, headlamp insert
    опти́ческий, реле́йный элеме́нт — photorelay, photoelectric [light] relay, photo-switch
    элеме́нты орби́ты — elements of an orbit
    параметри́ческий элеме́нт элк.parametric element
    печа́тающие элеме́нты полигр.printing areas
    печа́тный элеме́нт вчт.printed component
    плё́ночный элеме́нт элк.(thin-)film component
    элеме́нт пове́рхности мат.surface element
    поглоща́ющий элеме́нт элк.dissipative element
    элеме́нт подве́ски — spring unit
    элеме́нт подве́ски, упру́гий — springing medium
    полоско́вый элеме́нт элк.strip element
    при́месный элеме́нт полупр.impurity element
    пробе́льный элеме́нт полигр.spacing material
    элеме́нт, рабо́тающий в преде́льном режи́ме элк.marginal component
    развё́ртывающий элеме́нт тлв. — picture element, elemental area
    выделя́ть развё́ртывающий элеме́нт на передава́емом изображе́нии ( в фототелеграфе) — scan the subject-copy
    элеме́нт ра́стра тлв. — picture element, elemental area
    ра́стровый элеме́нт тлв. — picture element, elemental area
    резе́рвный элеме́нт т. над.redundant element
    элеме́нт свя́зи радио, элк.coupling element
    связу́ющий элеме́нт хим.binder
    сегнетоэлектри́ческий элеме́нт — ferroelectric element
    элеме́нт с жи́дким электроли́том — wet cell
    силово́й элеме́нт
    1. маш. load-bearing element
    2. стр. load-bearing member
    элеме́нт следя́щей систе́мы автмт.servo element
    со́лнечный элеме́нт — solar cell
    со́лнечный, кре́мниевый элеме́нт — silicon solar cell
    со́лнечный, тонкоплё́ночный элеме́нт — thin-film solar cell
    сопряжё́нный элеме́нт мат.transform
    стру́йный элеме́нт автмт.fluidic element
    сумми́рующий элеме́нт вчт.adding element
    сухо́й элеме́нт — dry cell
    элеме́нты сфери́ческого треуго́льника — circular parts
    элеме́нты сфе́ры мат. — median section; gore
    схе́мный элеме́нт — circuit element
    тепловыделя́ющий элеме́нт ( реактора) — fuel element
    термоэлектри́ческий элеме́нт — thermocouple, thermojunction (см. тж. термопара)
    ти́тульные элеме́нты кни́ги — front matter
    тонкоплё́ночный элеме́нт — thin-film component
    то́пливный элеме́нт — fuel cell
    элеме́нт траекто́рии астр., косм.elements of a trajectory
    управля́емый элеме́нт автмт.controlled element
    управля́ющий элеме́нт автмт.control element
    ферри́товый элеме́нт — ferrite element
    ферри́товый, разветвлё́нный элеме́нт — multipath ferrite structure
    ферромагни́тный элеме́нт — ferromagnetic element
    фильтру́ющий элеме́нт — filter element
    фильтру́ющий, во́йлочный элеме́нт — felt filter element
    элеме́нт форма́та ( данных) вчт.format item
    фотовольтаи́ческий элеме́нт — photovoltaic cell
    фотогальвани́ческий элеме́нт — photovoltaic cell
    фотохими́ческий элеме́нт — photochemical cell
    фотоэлектри́ческий элеме́нт — photocell, photoelectric cell
    функциона́льный элеме́нт элк.functional element
    хими́ческий элеме́нт — chemical element
    хими́ческий, лё́гкий элеме́нт — light element
    хими́ческий, радиоакти́вный элеме́нт — radioactive element
    хими́ческий, редкоземе́льный элеме́нт — rare earth element
    хими́ческий элеме́нт с больши́м а́томным но́мером — high-Z element
    хими́ческий элеме́нт с ма́лым а́томным но́мером — low-Z element
    хими́ческий, трансура́новый элеме́нт — transuranium element
    хими́ческий, тяжё́лый элеме́нт — heavy element
    элеме́нт це́пи — circuit element
    чувстви́тельный элеме́нт — sensing element, sensor
    электролити́ческий элеме́нт — electrolytic cell
    электронагрева́тельный элеме́нт — electric heating element
    электронагрева́тельный, тру́бчатый элеме́нт — tubular electric heating element

    Русско-английский политехнический словарь > элемент

  • 17 линейное напряжение

    1. мех. linear stress

    напряжение, вызывающее пластическую деформациюflow stress

    2. эл. line voltage

    напряжение накала — filament voltage; beater voltage

    усиление по напряжению — voltage amplification; voltage gain

    пусковое напряжение; отпирающее напряжениеtrigger voltage

    Русско-английский большой базовый словарь > линейное напряжение

См. также в других словарях:

  • Источник ЭДС — Рисунок 1  Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа) Источник ЭДС (идеальный источник напряжения)  двухполюсник, нап …   Википедия

  • магнитный усилитель-управляемый источник эдс — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN voltage controlling transductor …   Справочник технического переводчика

  • независимый источник эдс — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN independent emf source …   Справочник технического переводчика

  • Источник напряжения — Рисунок 1 Обозначение источника ЭДС схемах Источник ЭДС (точнее, идеальный источник ЭДС) источник питания, напряжение на зажимах которого постоянно (не зависит от тока). Напряжение может быть задано как константа, как функция времени, либо как… …   Википедия

  • Источник тока — …   Википедия

  • ЭДС — экспресс диагностика сифилиса мед. ЭДС электростатический двигатель техн. Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. ЭДС электродвижущая сила техн …   Словарь сокращений и аббревиатур

  • ЭДС — EMF ЭДС. Аббревиатура электродвижущей силы. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • ЭДС шума — 17. ЭДС шума Eg Двойное значение напряжения шума, измеряемое на активном сопротивлении нагрузки 600 W, включенной на конце линии непосредственно или через согласующий трансформатор, если волновое сопротивление линии связи отличается от 600 W,… …   Словарь-справочник терминов нормативно-технической документации

  • Идеальный источник напряжения — Рисунок 1 Обозначение источника ЭДС схемах Источник ЭДС (точнее, идеальный источник ЭДС) источник питания, напряжение на зажимах которого постоянно (не зависит от тока). Напряжение может быть задано как константа, как функция времени, либо как… …   Википедия

  • Химический источник тока — (аббр. ХИТ)  источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию. Содержание 1 История создания 2 Принцип действия …   Википедия

  • Коэффициент защитного действия соседнего провода по продольной ЭДС — 23. Коэффициент защитного действия соседнего провода по продольной ЭДС rЕ Отношение продольной ЭДС в сооружении проводной связи при наличии соседнего провода к продольной ЭДС, которая могла бы возникнуть в этом сооружении связи при прочих равных… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»